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Classical Mean Value Property

Mean value formulas characterize harmonic functions:

Au(x)=0 inQ <<= u(x) :]{3 ( )u(y) dy VBi(x) C Q.

(Recall Polidoro’s talk)

An asymptotic statement holds:
Au(x) =f(x) in Q
<~

u(x) = ]{3 U S I rel) ase 0



Operators involving bounded sets of coefficients

First, we consider differential operators of the form

F(x,D?*u(x)) = inf trace(A'D?u(x)A).

AcAx
Here, Ay is a bounded subset of S% (R).
One can also consider convex operators of the form

F(x,D?*u(x)) = sup trace(A'D?u(x)A).
AcAx



Theorem

A function u € C(Q) is a viscosity solution to

F(x,D%u(x)) = Jinf trace(A'D?u(x)A) = f(x) in Q,

if and only if

2
€
= inf Ay)dy————fi 2
u(x) AIEnAx]{gE(()) u(x+Ay)dy S0+ 2) (x)+o(e), ase — 0
in the viscosity sense.

(subsolution, <; supersolution, >)

Remark: z = x + Ay € x + AB.(0), then |x — z| < Ce (the mean
value formula is local).



Examples

We will denote the eigenvalues of a matrix M € S*(R) by
A(M) < Xo(M) < -+ < Ap(M).
e Pucci operators

Mye(D) =60 > XN[D>n)+0 > (D)

)\i(DQu)>0 )\i(Dzu)<0
and
Mfo(D*n)=0 > (D) Z Ai(D%u)
Ai(D2u)>0 Ai(D2u)<0

associated with the set of matrices
A={Aesi(R): VO < N(A) < VBY,
In fact, one can write

My o(M) = inf tr(A'MA) and M o(M) = sup tr(A*MA).
’ AcA ’ AcA



Examples

e The equation for the convex envelope (Oberman-Silvestre)
A1(D?*u) = min {)\ : A is an eigenvalue of Dzu},

that corresponds to the set of matrices

A= {A €S (R): Af(A) =+ = Au_1(A) = 0 and Ay(A) = 1}.

e Truncated Laplacians (Birindelli-Galise-Ishii)

k
P (D) =) XN(D*n) and P (D%u) ZAH+1 i(D%)

i=1

fork=1,2,...,n—1. Just take

A:{A:Al:---:An,kZOandAn,kH:..-zAnzl}.



sup-inf operators

Our next step is to consider sup-inf operators, let
Ax C P(S"(R)) be a non-empty subset for each x € R" and
assume that

UAX = {A € S"(R) : A e Afor some A€ AX} is bounded.

Consider

F(x,D?*u(x)) = sup inf trace(A'D?u(x)A).
Ach AEA



theorem

A function u is a viscosity solution to

F(x,D?*u(x)) = sup inf trace(A'D?u(x)A) = f(x)
Ach AA

if and only if

2

= sup in u(x -t x) + o(e?
109 = sop fnf fur AV dy = S o),

Ach, AEA +2)

as ¢ — 0.



Examples

e Isaacs operators

F(x,D? = sup inf t Al ;D?u(x)AL3) .
(x, D*u(x)) 042212326 race (Af ;D*u(x)Aqp)

Remark: every uniformly elliptic operator can be written as an
Isaacs operator.
e The k-th smallest eigenvalue of the Hessian,

A (D*u(x)) = max {VEVn?i?/|—1<DQU(X)V7 v) : dim(V) =n—k+ 1} .

Take the set
A= {{A S A(A) = 0 for i % 1, An(A) = 1, and vy, € V}},

dim(V) =n—k+1.



Operators involving unbounded sets of coefficients

Next, we consider operators that are obtained from unbounded
sets of matrices,

F(D?u) = inf trace(A'D*uA).
AcA
We consider the set
4= {M € S"(R) : F(M) > —oo}
and assume that

F is continuous in [ 4.



Operators involving unbounded sets of coefficients

We say that
u € C%(Q) is A-admissible in Q if

D?u(x) € T4 for every x € Q,

" F(D2u(x)) > —oc

for every x € Q.

This condition plays an analogous role to the convexity
(D?*u > 0) for the Monge-Ampére equation.



theorem

Let u € C?(Q2) be an A-admissible function. Then, for every
x € 2 we have

2
3
inf Ay)dy—u(x) = -——=F(D? 2
B A ) = S FOG) ol
A<(e)~1/21d
as € — 0.
As a consequence, u solves
F(D?%u(x)) = f(x)
if and only if
u(x) = inf ][ u(x + Ay)dy — if(x) + o(?)
~aea AR TER) ’

A<(e)~1/21d

as ¢ — 0.



Example. Monge-Ampere. Local version

It holds that
det D?u(x) = f(x),

if and only if

5211

sy (0 +l)

ux) = inf {][ u(x—i—Ay)dy}—

A<(e)~1/21d

g

as ¢ — 0.



Example. Monge-Ampere. Nonlocal version

It holds that
det D%u(x) = f(x),

if and only if

821’1

a9 (O Hl)

)= inf { / L OEEAY) dy}—

det A=1
x+AB:(0)CQ

as ¢ — 0.



Example. k—Hessians

k—Hessian operators, which are given by the elementary
symmetric polynomials

O'k()\l,...,)\n) = Z )‘il>‘12"')‘ik

1<ii<ig<-<ix<n

evaluated in the eigenvalues of the Hessian, {\i(D?u)}1<i<n.

For these operators to fit our framework we need to write them
in the form

FD?u()) = k [o (M (D). M) ]



Example. k—Hessians

In this case the result reads as:

Assume that u € C?(Q) is k-convex, that is, oj(A(D?u(x))) > 0
for all j=1,...,k, for every x € Q. Then, for every x € Q we
have

62

3o 1 2 FOKD ) E (),

Ac Ay
A<(e)~1/21d

inf ][E . u(x+Ay)dy—u(x) =

as € — 0, where
Ax = {A © A(A) = oi_14(7y) with v = (71, ., M) € T
and oy (y) = 1}

and ox—1i(71,-- > ) = ok—1 (V155 V=150, Vig1s - - )



Lower-order terms.

When the mean value formula involves averages over balls that
are not centered at 0 but at e?v with |[v| = 1, we obtain
operators with first-order terms. For example, we have

Alen,f\x o) u(x + Ay)dy — u(x)

= ¢? Aigjlx {2(n+2)tr(AtD2u(X)A) + (Du(x), Av)} + o(e?),
as € — 0.
We can also look for zero-order terms and consider

inf (1 a52)][ u(x + Ay) dy — u(x)
AcAy B<(0)

2 {2(1114_2) Aienjlx tI’(AtD2u(X)A) — au(x)} + 0(62),

as ¢ — 0.



Ingredients in the proofs.

e Mean values.

][ cdy = c, c € R,
B.(0)

][ (v,y)dy =0, v eR",
B.(0)

62
My, y)dy =
]{35(0)< > n+2

e M — F(x,M) is continuous in M

trace(M), M e S".

inf trace(A' (M £nI)A) — inf trace(A'MA
Jnf race(A”" ( nl) A) Jnf race( )

as n — 0, for every M € S"(R).



The heart of the matter. u € C2.

Given x € €, consider the paraboloid
1
P(z) = u(x) + (Vu(x),z — x) + §<D2u(x)(z —x),(z —x)).
Since u € C? we have

][ u(x + Ay)dy ~ ][ P(x + Ay)dy
Be(0) (0)

£

1

ey +f (V) Av)dy+ 5 (DPuGAy Aydy
B:(0) B:(0) B:(0)

2

€
n—+2
Then, we expect that,

trace(A'D?u(x)A).

= () +

1 2
i?“f]{ss(o) u(x + Ay)dy ~ u(x) + 5 nj_ 5 izlf trace(A'D?u(x)A).
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