Asymptotic Mean Value Formulas for Solutions of General Second-Order Elliptic Equations.

Julio D. Rossi

U. Buenos Aires (Argentina), jrossi@dm.uba.ar
To the memory of Ireneo Peral.

P. Blanc (Buenos Aires), F. Charro (Detroit), J. J. Manfredi (Pittsburgh),

Mostly Maximum Principle, Cortona, 2022

Classical Mean Value Property

Mean value formulas characterize harmonic functions:

$$\Delta u(x) = 0 \ \ \mathrm{in} \ \Omega \quad \iff \quad u(x) = \! \int_{B_r(x)} \! u(y) \, \mathrm{d}y \quad \ \forall B_r(x) \subset \Omega.$$

(Recall Polidoro's talk)

An asymptotic statement holds:

$$\Delta u(x) = f(x) \text{ in } \Omega$$

$$\iff$$

$$u(x) = \int_{B_{\varepsilon}(x)} u(y) dy - \frac{\varepsilon^2}{2(n+2)} f(x) + o(\varepsilon^2) \quad \text{as } \varepsilon \to 0.$$

Operators involving bounded sets of coefficients

First, we consider differential operators of the form

$$F(x, D^2u(x)) = \inf_{A \in \mathcal{A}_x} \operatorname{trace}(A^t D^2u(x)A).$$

Here, \mathcal{A}_x is a bounded subset of $S^n_+(\mathbb{R})$.

One can also consider convex operators of the form

$$F(x, D^2u(x)) = \sup_{A \in \mathcal{A}_x} \operatorname{trace}(A^t D^2u(x)A).$$

Theorem

A function $u \in C(\Omega)$ is a viscosity solution to

$$F(x,D^2u(x)) = \inf_{A \in \mathcal{A}_x} \operatorname{trace}(A^tD^2u(x)A) = f(x) \quad \mathrm{in} \ \Omega,$$

if and only if

$$u(x) = \inf_{A \in \mathcal{A}_x} \int_{B_{\varepsilon}(0)} u(x + Ay) \, dy - \frac{\varepsilon^2}{2(n+2)} f(x) + o(\varepsilon^2), \quad \text{as } \varepsilon \to 0$$

in the viscosity sense.

(subsolution, \leq ; supersolution, \geq)

Remark: $z = x + Ay \in x + AB_{\varepsilon}(0)$, then $|x - z| \le C\varepsilon$ (the mean value formula is local).

Examples

We will denote the eigenvalues of a matrix $M \in S^n(\mathbb{R})$ by $\lambda_1(M) \leq \lambda_2(M) \leq \cdots \leq \lambda_n(M)$.

• Pucci operators

$$\mathcal{M}_{\theta,\Theta}^{-}(D^2u) = \theta \sum_{\lambda_i(D^2u)>0} \lambda_i(D^2u) + \Theta \sum_{\lambda_i(D^2u)<0} \lambda_i(D^2u)$$

and

$$\mathcal{M}_{\theta,\Theta}^+(D^2u) = \Theta \sum_{\lambda_i(D^2u)>0} \lambda_i(D^2u) + \theta \sum_{\lambda_i(D^2u)<0} \lambda_i(D^2u),$$

associated with the set of matrices

$$\mathcal{A} = \left\{ A \in S^n_+(\mathbb{R}) : \sqrt{\theta} \leq \lambda_i(A) \leq \sqrt{\Theta} \right\},$$

In fact, one can write

$$\mathcal{M}_{\theta,\Theta}^-(M) = \inf_{A \in \mathcal{A}} \operatorname{tr}(A^t M A) \qquad \text{and} \qquad \mathcal{M}_{\theta,\Theta}^+(M) = \sup_{A \in \mathcal{A}} \operatorname{tr}(A^t M A).$$

Examples

• The equation for the convex envelope (Oberman-Silvestre)

$$\lambda_1(D^2u)=\text{min}\,\Big\{\lambda:\lambda\text{ is an eigenvalue of }D^2u\Big\},$$

that corresponds to the set of matrices

$$\mathcal{A} = \Big\{ A \in S^n_+(\mathbb{R}) : \lambda_1(A) = \dots = \lambda_{n-1}(A) = 0 \text{ and } \lambda_n(A) = 1 \Big\}.$$

• Truncated Laplacians (Birindelli-Galise-Ishii)

$$\mathcal{P}_k^-(D^2u) = \sum_{i=1}^k \lambda_i(D^2u) \quad \text{and} \quad \mathcal{P}_k^+(D^2u) = \sum_{i=1}^k \lambda_{n+1-i}(D^2u),$$

for $k = 1, 2, \ldots, n - 1$. Just take

$$\mathcal{A} = \Big\{A: \lambda_1 = \dots = \lambda_{n-k} = 0 \text{ and } \lambda_{n-k+1} = \dots = \lambda_n = 1\Big\}.$$

sup-inf operators

Our next step is to consider sup-inf operators, let $\mathbb{A}_x \subset \mathcal{P}(S^n(\mathbb{R}))$ be a non-empty subset for each $x \in \mathbb{R}^n$ and assume that

$$\bigcup \mathbb{A}_x = \left\{ A \in S^n(\mathbb{R}) \ : \ A \in \mathcal{A} \text{ for some } \mathcal{A} \in \mathbb{A}_x \right\} \quad \text{is bounded}.$$

Consider

$$F(x,D^2u(x)) = \sup_{\mathcal{A} \in \mathbb{A}_x} \inf_{A \in \mathcal{A}} \operatorname{trace}(A^tD^2u(x)A).$$

theorem

A function u is a viscosity solution to

$$F(x,D^2u(x)) = \sup_{\mathcal{A} \in \mathbb{A}_x} \inf_{A \in \mathcal{A}} \operatorname{trace}(A^tD^2u(x)A) = f(x)$$

if and only if

$$u(x) = \sup_{\mathcal{A} \in \mathbb{A}_x} \inf_{A \in \mathcal{A}} \int_{B_{\varepsilon}(0)} u(x + Ay) \, dy - \frac{\varepsilon^2}{2(n+2)} f(x) + o(\varepsilon^2),$$

Examples

• Isaacs operators

$$F\big(x,D^2u(x)\big) = \sup_{\alpha \in \mathcal{A}} \inf_{\beta \in \mathcal{B}} \operatorname{trace}\left(A^t_{\alpha\beta}D^2u(x)A_{\alpha\beta}\right).$$

Remark: every uniformly elliptic operator can be written as an Isaacs operator.

• The k-th smallest eigenvalue of the Hessian,

$$\lambda_k\big(D^2u(x)\big) = \max_V \left\{ \min_{v \in V, \ |v|=1} \langle D^2u(x)v,v \rangle \ : \ \dim(V) = n-k+1 \right\}.$$

Take the set

$$\mathbb{A} = \Big\{ \big\{ A : \lambda_i(A) = 0 \text{ for } i \neq n, \lambda_n(A) = 1, \text{ and } v_n \in V \big\} \Big\},$$

$$\dim(V) = n - k + 1.$$

Operators involving unbounded sets of coefficients

Next, we consider operators that are obtained from unbounded sets of matrices,

$$F(D^{2}u) = \inf_{A \in \mathcal{A}} \operatorname{trace}(A^{t}D^{2}uA).$$

We consider the set

$$\Gamma_{\mathcal{A}} = \left\{ \mathrm{M} \in \mathrm{S}^{\mathrm{n}}(\mathbb{R}) : \mathrm{F}(\mathrm{M}) > -\infty \right\}$$

and assume that

F is continuous in $\Gamma_{\mathcal{A}}$.

Operators involving unbounded sets of coefficients

We say that

$$u \in C^2(\Omega)$$
 is A -admissible in Ω if

$$D^2u(x) \in \Gamma_A$$
 for every $x \in \Omega$,

i.e.,

$$F(D^2u(x)) > -\infty$$

for every $x \in \Omega$.

This condition plays an analogous role to the convexity $(D^2u \ge 0)$ for the Monge-Ampère equation.

theorem

Let $u \in C^2(\Omega)$ be an A-admissible function. Then, for every $x \in \Omega$ we have

$$\inf_{\substack{A \in \mathcal{A} \\ A < (\varepsilon)^{-1/2} \text{Id}}} \int_{B_{\varepsilon}(0)} u(x+Ay) \, dy - u(x) = \frac{\varepsilon^2}{2(n+2)} F(D^2 u(x)) + o(\varepsilon^2),$$

as $\varepsilon \to 0$.

As a consequence, u solves

$$F(D^2u(x)) = f(x)$$

if and only if

$$u(x) = \inf_{\substack{A \in \mathcal{A} \\ A \leq (\varepsilon)^{-1/2} \mathrm{Id}}} \oint_{B_{\varepsilon}(0)} u(x + Ay) \, \mathrm{d}y - \frac{\varepsilon^2}{2(n+2)} f(x) + o(\varepsilon^2),$$

Example. Monge-Ampere. Local version

It holds that

$$\det D^2 u(x) = f(x),$$

if and only if

$$u(x) = \inf_{\substack{\det A = 1 \\ A \le (\varepsilon)^{-1/2} \mathrm{Id}}} \left\{ \int_{B_{\varepsilon}(0)} u(x + Ay) \, \mathrm{d}y \right\} - \frac{\varepsilon^2 \, \mathrm{n}}{2(\mathrm{n} + 2)} \, (f(x))^{1/\mathrm{n}} + \mathrm{o}(\varepsilon^2)$$

Example. Monge-Ampere. Nonlocal version

It holds that

$$\det D^2 u(x) = f(x),$$

if and only if

$$u(x) = \inf_{\substack{\det A = 1 \\ x + AB_{\varepsilon}(0) \subset \Omega}} \left\{ \int_{B_{\varepsilon}(0)} u(x + Ay) \, dy \right\} - \frac{\varepsilon^2 n}{2(n+2)} (f(x))^{1/n} + o(\varepsilon^2)$$

Example. k—Hessians

k—Hessian operators, which are given by the elementary symmetric polynomials

$$\sigma_k(\lambda_1, \dots, \lambda_n) = \sum_{1 \leq i_1 < i_2 < \dots < i_k \leq n} \lambda_{i_1} \lambda_{i_2} \dots \lambda_{i_k}$$

evaluated in the eigenvalues of the Hessian, $\{\lambda_i(D^2u)\}_{1\leq i\leq n}$.

For these operators to fit our framework we need to write them in the form

$$F_k(D^2u(x)) = k \left[\sigma_k \Big(\lambda_1(D^2u(x)), \dots, \lambda_n(D^2u(x)) \Big) \right]^{\frac{1}{k}},$$

Example. k—Hessians

In this case the result reads as:

Assume that $u \in C^2(\Omega)$ is k-convex, that is, $\sigma_j(\lambda(D^2u(x))) \geq 0$ for all j = 1, ..., k, for every $x \in \Omega$. Then, for every $x \in \Omega$ we have

$$\inf_{\substack{A\in\mathcal{A}_k\\ A\leq (\varepsilon)^{-1/2}\mathrm{Id}}} \!\! \int_{B_\varepsilon(0)} u(x+Ay)\,\mathrm{d}y - u(x) = \frac{\varepsilon^2}{2(n+2)} k(\sigma_k(D^2u(x)))^{\frac{1}{k}} + o(\varepsilon^2),$$

as $\varepsilon \to 0$, where

$$\begin{split} \mathcal{A}_k &= \left\{A: \ \lambda_i^2(A) = \sigma_{k-1,i}(\gamma) \ \mathrm{with} \ \gamma = (\gamma_1, \dots, \gamma_n) \in \Gamma_k \\ &\quad \mathrm{and} \ \sigma_k(\gamma) = 1 \right\} \end{split}$$

and
$$\sigma_{k-1,i}(\gamma_1,\ldots,\gamma_n) = \sigma_{k-1}(\gamma_1,\ldots,\gamma_{i-1},0,\gamma_{i+1},\ldots,\gamma_n).$$

Lower-order terms.

When the mean value formula involves averages over balls that are not centered at 0 but at $\varepsilon^2 v$ with |v| = 1, we obtain operators with first-order terms. For example, we have

$$\begin{split} &\inf_{A \in \mathcal{A}_x} \int_{B_{\varepsilon}(\varepsilon^2 v)} u(x + Ay) \, dy - u(x) \\ &= \varepsilon^2 \inf_{A \in \mathcal{A}_x} \left\{ \frac{1}{2(n+2)} tr(A^t D^2 u(x) A) + \langle D u(x), A v \rangle \right\} + o(\varepsilon^2), \end{split}$$

as $\varepsilon \to 0$.

We can also look for zero-order terms and consider

$$\begin{split} &\inf_{A \in \mathcal{A}_x} (1 - \alpha \varepsilon^2) \!\! \int_{B_{\varepsilon}(0)} \!\! u(x + Ay) \, dy - u(x) \\ &= \varepsilon^2 \left\{ \frac{1}{2(n+2)} \inf_{A \in \mathcal{A}_x} \!\! \operatorname{tr}(A^t D^2 u(x) A) - \alpha u(x) \right\} + o(\varepsilon^2), \end{split}$$

Ingredients in the proofs.

• Mean values.

$$\begin{split} & \oint_{B_{\varepsilon}(0)} c \, \mathrm{d}y = c, \qquad c \in \mathbb{R}, \\ & \oint_{B_{\varepsilon}(0)} \langle v, y \rangle \, \mathrm{d}y = 0, \qquad v \in \mathbb{R}^n, \\ & \oint_{B_{\varepsilon}(0)} \langle My, y \rangle \, \mathrm{d}y = \frac{\varepsilon^2}{n+2} \mathrm{trace}(M), \qquad M \in S^n. \end{split}$$

• $M \mapsto F(x, M)$ is continuous in M

$$\inf_{A \in \mathcal{A}_x} \operatorname{trace}(A^t \left(M \pm \eta I\right) A) \rightarrow \inf_{A \in \mathcal{A}_x} \operatorname{trace}(A^t M A)$$

as $\eta \to 0$, for every $M \in S^n(\mathbb{R})$.

The heart of the matter. $u \in C^2$.

Given $x \in \Omega$, consider the paraboloid

$$P(z) = u(x) + \langle \nabla u(x), z - x \rangle + \frac{1}{2} \langle D^2 u(x)(z - x), (z - x) \rangle.$$

Since $u \in C^2$ we have

Then, we expect that,

$$\inf_{\mathcal{A}} \int_{B_{\varepsilon}(0)} u(x + Ay) dy \approx u(x) + \frac{1}{2} \frac{\varepsilon^2}{n+2} \inf_{\mathcal{A}} \operatorname{trace}(A^t D^2 u(x) A).$$

Some references

- I. Birindelli, G. Galise, and H. Ishii, (2021).
- P. Blanc, F. Charro, J. D. R., J. J. Manfredi; (2021), (2022).
- P. Blanc and J. D. R.; (2019).
- L.A. Caffarelli, L. Nirenberg, and J. Spruck; (1985).
- F. R. Harvey, H. B. Jr. Lawson, (2009).
- Ü. Kuran; (1972).
- J. J. Manfredi, M. Parviainen, and J. D. Rossi, (2010).
- N.S. Trudinger, X.J. Wang; (1999).
- P. Blanc and J.D.R. Game Theory and Partial Differential Equations. De Gruyter, 2019.

Grazie!!! Thanks!!! Gracias!!!